Abstract
The quasi-static and dynamic impact compression tests of the TA31 titanium alloy were conducted at the strain rates from 0.001 s−1 to 4000 s−1 and deformation temperatures from 293 K to 773 K, and the TA31 titanium alloy showed typical elastic-plastic characteristics. In the initial stage of compression (elastic deformation), the stress and strain are proportional, and the stress–strain curve is a straight line. In the plastic deformation stage, the flow stress decreases significantly with the increase of deformation temperature, while the strain rate has no significant effect on the flow stress during dynamic compression. A constitutive model has been established to predict the flow stress, and the relative error is 2.32%. It is shown by observing the microstructure that when the deformation temperature is 293 °C, and the strain rate reaches 1600 s−1, a shear band with an angle of about 45° to the axial direction of the specimen appears, and the severe shear deformation makes the α phase in the shear band fibrous and contains high-density dislocations. The formation process of the shear band and its influence on fracture are analyzed and discussed.
Funder
the Key Science and Technology Research Project of Henan Province of China
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献