Abstract
Pre-plastic deformation (PPD) treatments on bulk metallic glasses (BMGs) have previously been shown to be helpful in producing multiple shear bands. In this work, the applicability of the PPD approach on BMGs with different Poisson’s ratios was validated based on experimental and simulation observations. It was found that for BMGs with high Poisson’s ratios (HBMGs, e.g., Zr56Co28Al16 and Zr46Cu46Al8), the PPD treatment can easily trigger a pair of large plastic deformation zones consisting of multiple shear bands. These PPD-treated HBMGs clearly display improved strength and compressive plasticity. On the other hand, the mechanical properties of BMGs with low Poisson’s ratios (LBMG, e.g., Fe48Cr15Mo14Y2C15B6) become worse due to a few shear bands and micro-cracks in extremely small plastic deformation zones. Additionally, for the PPD-treated HBMGs with similar high Poisson’s ratios, the Zr56Co28Al16 BMG exhibits much larger plasticity than the Zr46Cu46Al8 BMG. This phenomenon is mainly due to more defective icosahedral clusters in the Zr56Co28Al16 BMG, which can serve as nucleation sites for shear transformation zones (STZs) during subsequent deformation. The present study may provide a basis for understanding the plastic deformation mechanism of BMGs.
Funder
Shenzhen Science and Technology Program
National Natural Science Foundation of China
Free Exploring Basic Research Project of Shenzhen Virtual University Park
Natural Science Foundation of Shandong Province
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献