Abstract
This study investigated the effects of a multifunctional acrylate copolymer—Trimethylolpropane Triacrylate (TMPTA) and Di-pentaerythritol Polyacrylate (A-DPH)—on the mechanical properties of chemically polymerized acrylic resin and its bond strength to a CAD/CAM polymethyl methacrylate (PMMA) disk. The methyl methacrylate (MMA) samples were doped with one of the following comonomers: TMPTA, A-DPH, or Trimethylolpropane Trimethacrylate (TMPTMA). The doping ratio ranged from 10 wt% to 50 wt% in 10 wt% increments. The flexural strength (FS) and modulus (FM) of PMMA with and without comonomer doping, as well as the shear bond strength (SBS) between the comonomer-doped PMMA and CAD/CAM PMMA disk, were evaluated. The highest FS (93.2 ± 4.2 MPa) was obtained when doped with 20 wt% of TMPTA. For TMPTMA, the FS decreased with the increase in the doping ratio. For SBS, TMPTA showed almost constant values (ranging from 7.0 to 8.2 MPa) regardless of the doping amount, and A-DPH peaked at 10 wt% doping (8.7 ± 2.2 MPa). TMPTMA showed two peaks at 10 wt% (7.2 ± 2.6 MPa) and 40 wt% (6.5 ± 2.3 MPa). Regarding the failure mode, TMPTMA showed mostly adhesive failure between the CAD/CAM PMMA disk and acrylic resin while TMPTA and A-DPH showed an increased rate of cohesive or mixed failures. Acrylate’s addition as a comonomer to PMMA provided improved mechanical properties and bond strength to the CAD/CAM PMMA disk.
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献