First-Decade Biomass and Carbon Accumulation, and Woody Community Change after Severe Wind Damage in a Hemlock-White Pine Forest Remnant

Author:

Peterson ChrisORCID

Abstract

Studies of biomass and carbon dynamics and community composition change after forest wind disturbance have predominantly examined trends after low and intermediate severity events, while studies after very severe wind disturbance have been few. This study documents trends in aboveground biomass and carbon across 10 years of forest recovery after severe wind disturbance. In July 1989, a tornado struck mature Tsugacanadensis-Pinusstrobus forest in northwest Connecticut, USA, causing damage across roughly 8 ha. Canopy tree damage and regeneration were surveyed in 1991 and 1999. Two primary hypotheses were tested, both of which derive from regeneration being primarily via the release of suppressed saplings rather than new seedling establishment: (1) Biomass and carbon accumulation will be faster than accumulation reported from a similar forest that experienced similar severity of wind disturbance; and (2) The stand will experience very little change in species composition or diversity. Estimated immediate post-disturbance (1989) aboveground live-tree carbon was 20.7 ± 43.9 Mg ha−1 (9.9% of pre-disturbance) Ten years after the disturbance, carbon in aboveground live tree biomass increased to 37.1 ± 47.9 Mg ha−1; thus for the first decade, annual accumulation averaged 1.6 Mg ha−1 of carbon; this was significantly faster than the rate reported in a similar forest that experienced similar severity of wind disturbance. The species diversity of woody stems ten years after the disturbance was significantly higher (nonoverlapping confidence intervals of rarefaction curves) than pre-disturbance canopy trees. Thus, hypothesis 1 was confirmed while hypothesis 2 was rejected. This study augments the limited number of longer-term empirical studies that report biomass and carbon accumulation rates after wind disturbance, and can therefore serve as a benchmark for mechanistic and modeling research.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3