Classification and Observed Seasonal Phenology of Broadleaf Deciduous Forests in a Tropical Region by Using Multitemporal Sentinel-1A and Landsat 8 Data

Author:

Tran Anh TuanORCID,Nguyen Kim Anh,Liou Yuei AnORCID,Le Minh HangORCID,Vu Van TruongORCID,Nguyen Dinh Duong

Abstract

Broadleaf deciduous forests (BDFs) or dry dipterocarp forests play an important role in biodiversity conservation in tropical regions. Observations and classification of forest phenology provide valuable inputs for ecosystem models regarding its responses to climate change to assist forest management. Remotely sensed observations are often used to derive the parameters corresponding to seasonal vegetation dynamics. Data acquired from the Sentinel-1A satellite holds a great potential to improve forest type classification at a medium-large scale. This article presents an integrated object-based classification method by using Sentinel-1A and Landsat 8 OLI data acquired during different phenological periods (rainy and dry seasons). The deciduous forest and nondeciduous forest areas are classified by using NDVI (normalized difference vegetation index) from Landsat 8 cloud-free composite images taken during dry (from February to April) and rainy (from June to October) seasons. Shorea siamensis Miq. (S. siamensis), Shorea obtusa Wall. ex Blume (S. obtusa), and Dipterocarpus tuberculatus Roxb. (D. tuberculatus) in the deciduous forest area are classified based on the correlation between phenology of BDFs in Yok Don National Park and backscatter values of time-series Sentinel-1A imagery in deciduous forest areas. One hundred and five plots were selected during the field survey in the study area, consisting of dominant deciduous species, tree height, and canopy diameter. Thirty-nine plots were used for training to decide the broadleaf deciduous forest areas of the classified BDFs by the proposed method, and the other sixty-six plots were used for validation. Our proposed approach used the changes of backscatter in multitemporal SAR images to implement BDF classification mapping with acceptable accuracy. The overall accuracy of classification is about 79%, with a kappa coefficient of 0.7. Accurate classification and mapping of the BDFs using the proposed method can help authorities implement forest management in the future.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3