Development, Modeling, Fabrication, and Characterization of a Magnetic, Micro-Spring-Suspended System for the Safe Electrical Interconnection of Neural Implants

Author:

Hoch Katharina,Pothof Frederick,Becker Felix,Paul Oliver,Ruther Patrick

Abstract

The development of innovative tools for neuroscientific research is based on in vivo tests typically applied to small animals. Most often, the interfacing of neural probes relies on commercially available connector systems which are difficult to handle during connection, particularly when freely behaving animals are involved. Furthermore, the connectors often exert high mechanical forces during plugging and unplugging, potentially damaging the fragile bone structure. In order to facilitate connector usage and increase the safety of laboratory animals, we developed a new magnetic connector system circumventing the drawbacks of existing tools. The connector system uses multiple magnet pairs and spring-suspended electrical contact pads realized using micro-electromechanical systems (MEMS) technologies. While the contact pad suspension increases the system tolerance in view of geometrical variations, we achieved a reliable self-alignment of the connector parts at ±50 µm provided by the specifically oriented magnet pairs and without the need of alignment pins. While connection forces are negligible, we can adjust the forces during connector release by modifying the magnet distance. With the connector test structures developed here, we achieved an electrical connection yield of 100%. Based on these findings, we expect that in vivo experiments with freely behaving animals will be facilitated with improved animal safety.

Funder

Seventh Framework Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3