Functional Diversity of Soil Microorganisms in Taiga Forests in the Middle and Late Stages of Restoration after Forest Fires

Author:

Cheng Zhichao1,Gao Mingliang2,Pan Hong1,Fu Xiaoyu1,Wei Dan1,Lu Xinming1ORCID,Wu Song3,Yang Libin12

Affiliation:

1. Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China

2. Heilongjiang Huzhong National Nature Reserve, Huzhong 165038, China

3. Science and Technology Innovation Center, Institute of Scientific and Technical Information of Heilongjiang Province, Harbin 150028, China

Abstract

Fire can significantly affect the structure and function of forest soil microorganisms. Therefore, it is important to study the effects of different fire intensities on soil microbial carbon source utilization capacity in cold-temperate larch forests to protect and utilize forest ecosystems. In this study, we investigated the effects of different burning intensities on the carbon utilization capacity of soil microorganisms in fire sites from 2010 and 2000 using Biolog-Eco technology. Our findings revealed that (1) fire significantly increased soil pH, AN (available nitrogen), and AK (available potassium) (p < 0.05); (2) fire significantly increased the average color change rate (AWCD) of soil microorganisms (p < 0.05); (3) the Shannon index of soil microorganisms increased significantly, whereas the Simpson index and the McIntosh index decreased significantly after the fire—however, the McIntosh index in the 10M site was not altered; (4) the metabolic functions of soil microbial communities differed significantly among different fire intensities—MC (moisture content), TN (total nitrogen), and AK were the most influential soil environmental factors in the soil microbial community; and (5) mid-term fire restoration significantly increased microbial responses to carbohydrates, amino acids, esters, alcohols, amines, and acids, while late-fire burn sites significantly increased the microbial utilization intensity of amino acids, esters, and acids. In conclusion, fire significantly altered the functional diversity of soil microorganisms and microbial activities related to carbon source substrate utilization. Additionally, the ability of microorganisms to utilize a single carbon source substrate was also altered.

Funder

Forestry and grassland ecological protection and restoration funds project

the Foundation of Heilongjiang Academy of Sciences

the Financial Special Project of Heilongjiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3