Abstract
Blue agave is an important commercial crop in Mexico, and it is the main source of the traditional mexican beverage known as tequila. The variety of blue agave crop known as Tequilana Weber is a crucial element for tequila agribusiness and the agricultural economy in Mexico. The number of agave plants in the field is one of the main parameters for estimating production of tequila. In this manuscript, we describe a mathematical morphology-based algorithm that addresses the agave automatic counting task. The proposed methodology was applied to a set of real images collected using an Unmanned Aerial Vehicle equipped with a digital Red-Green-Blue (RGB) camera. The number of plants automatically identified in the collected images was compared to the number of plants counted by hand. Accuracy of the proposed algorithm depended on the size heterogeneity of plants in the field and illumination. Accuracy ranged from 0.8309 to 0.9806, and performance of the proposed algorithm was satisfactory.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献