Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects

Author:

Guo Yu1,Zhang Jundong1,Sun Bin1,Wang Yongkang1

Affiliation:

1. College of Marine Engineering, Dalian Maritime University, Dalian 116026, China

Abstract

Deep Transfer Learning (DTL) signifies a novel paradigm in machine learning, merging the superiorities of deep learning in feature representation with the merits of transfer learning in knowledge transference. This synergistic integration propels DTL to the forefront of research and development within the Intelligent Fault Diagnosis (IFD) sphere. While the early DTL paradigms, reliant on fine-tuning, demonstrated effectiveness, they encountered considerable obstacles in complex domains. In response to these challenges, Adversarial Deep Transfer Learning (ADTL) emerged. This review first categorizes ADTL into non-generative and generative models. The former expands upon traditional DTL, focusing on the efficient transference of features and mapping relationships, while the latter employs technologies such as Generative Adversarial Networks (GANs) to facilitate feature transformation. A thorough examination of the recent advancements of ADTL in the IFD field follows. The review concludes by summarizing the current challenges and future directions for DTL in fault diagnosis, including issues such as data imbalance, negative transfer, and adversarial training stability. Through this cohesive analysis, this review aims to offer valuable insights and guidance for the optimization and implementation of ADTL in real-world industrial scenarios.

Funder

National Major Scientific Research Instrument Development Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3