An Improved BM3D Algorithm Based on Image Depth Feature Map and Structural Similarity Block-Matching

Author:

Cao Jia1ORCID,Qiang Zhenping1ORCID,Lin Hong1ORCID,He Libo2ORCID,Dai Fei1ORCID

Affiliation:

1. College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China

2. Information Security College, Yunnan Police College, Kunming 650221, China

Abstract

We propose an improved BM3D algorithm for block-matching based on UNet denoising network feature maps and structural similarity (SSIM). In response to the traditional BM3D algorithm that directly performs block-matching on a noisy image, without considering the deep-level features of the image, we propose a method that performs block-matching on the feature maps of the noisy image. In this method, we perform block-matching on multiple depth feature maps of a noisy image, and then determine the positions of the corresponding similar blocks in the noisy image based on the block-matching results, to obtain the set of similar blocks that take into account the deep-level features of the noisy image. In addition, we improve the similarity measure criterion for block-matching based on the Structural Similarity Index, which takes into account the pixel-by-pixel value differences in the image blocks while fully considering the structure, brightness, and contrast information of the image blocks. To verify the effectiveness of the proposed method, we conduct extensive comparative experiments. The experimental results demonstrate that the proposed method not only effectively enhances the denoising performance of the image, but also preserves the detailed features of the image and improves the visual quality of the denoised image.

Funder

Natural Science Foundation of China

Yunnan Fundamental Research Projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3