Geomorphologic Analysis of Small River Basin within the Framework of Fractal Tree

Author:

Feng Meiyan,Jung Kwansue,Kim Joo-Cheol

Abstract

This paper presents the modified framework of geomorphologic analysis based on the concept of fractal tree. Especially, it is intended to provide hydrologic practitioners with the information on the fractal property of small river basins. To this end, the complete drainage path network is applied to a growth process of a fractal tree for the basin of interest by connecting a channel network to overland drainage pathways. The growth process of a fractal tree would occur only within the limited region possessing channel flow properties in a natural river basin. The exponent of the intra basin type of Hack’s law could show a variable trend in small river basins mainly due to anisotropic property of the catchment planform. The bifurcation process of a drainage path network might be more sensitive to the growth step of the fractal tree than the meandering process of drainage path segment. The fractal dimension from the sinuosity of a channel segment is relatively stable compared to the one from the bifurcation process of the network, so that the geomorphologic features of a small river basin can be characterized by the anisotropic property of catchment planform as well as the bifurcation property of drainage path network with the growth of the fractal tree.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

1. The Fractal Geometry of Nature;Mandelbrot,1982

2. How Nature Works;Bak,1996

3. Power law distributions of discharge mass and energy in river basins

4. On morphometric properties of basins, scale effects and hydrological response

5. The extraction of drainage networks from digital elevation data;O’Callaghan;Comput. Vision Graph. Image Process.,1984

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3