High Spatiotemporal Model-Based Tracking and Environmental Risk-Exposure of Wastewater-Derived Pharmaceuticals across River Networks in Saxony, Germany

Author:

Teran-Velasquez Geovanni1ORCID,Helm Björn1ORCID,Krebs Peter1

Affiliation:

1. Department of Hydro Sciences, Faculty of Environmental Sciences, Institute of Urban and Industrial Water Management, TU Dresden, 01069 Dresden, Germany

Abstract

Wastewater treatment plants represent relevant point sources of environmental-adverse pharmaceuticals in river systems. Extensive monitoring and substance-routing models are crucial for environmental risk assessment and river planning. However, most current models assume long-term and large spatial averaged values of pharmaceutical consumption and river discharge flows. This study describes a detailed tracking of pharmaceutical occurrence across river networks with high spatiotemporal resolution to assist better environmental risk assessments. Using high spatiotemporal prescription data of four (pseudo-) persistent pharmaceuticals and river discharge characterization, an adjusted graph-theory-based model was implemented to efficiently evaluate the impact of the effluents of 626 wastewater treatment plants across nine river networks located in Saxony, Germany. Multisite calibration results demonstrated the model capability to satisfactorily predict daily pharmaceutical loads and concentrations with high spatial discretization. Based on minimal river dilution and mean predicted concentrations, the risk exposure revealed carbamazepine and ciprofloxacin as the most critical pharmaceuticals and Vereinigte Mulde as the most risk-exposed river network with up to 34.0% and 23.7% of its river length exceeding half and the total of ecotoxicological criteria, respectively. In comparison, other river networks showed less than 23.5% and 15.0% of their river lengths exceeding half and the total of ecotoxicological criteria of all four selected pharmaceuticals, respectively.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3