GAN-Based Image Colorization for Self-Supervised Visual Feature Learning

Author:

Treneska SandraORCID,Zdravevski EftimORCID,Pires Ivan MiguelORCID,Lameski PetreORCID,Gievska SonjaORCID

Abstract

Large-scale labeled datasets are generally necessary for successfully training a deep neural network in the computer vision domain. In order to avoid the costly and tedious work of manually annotating image datasets, self-supervised learning methods have been proposed to learn general visual features automatically. In this paper, we first focus on image colorization with generative adversarial networks (GANs) because of their ability to generate the most realistic colorization results. Then, via transfer learning, we use this as a proxy task for visual understanding. Particularly, we propose to use conditional GANs (cGANs) for image colorization and transfer the gained knowledge to two other downstream tasks, namely, multilabel image classification and semantic segmentation. This is the first time that GANs have been used for self-supervised feature learning through image colorization. Through extensive experiments with the COCO and Pascal datasets, we show an increase of 5% for the classification task and 2.5% for the segmentation task. This demonstrates that image colorization with conditional GANs can boost other downstream tasks’ performance without the need for manual annotation.

Funder

FEDER---PT2020 partnership agreement

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HDMA-CGAN: Advancing Image Style Transfer with Deep Learning;International Journal of Pattern Recognition and Artificial Intelligence;2024-06-29

2. Video Colorization Based on Variational Autoencoder;Electronics;2024-06-20

3. Interactive Deep Image Colorization of Quality;International Journal of Innovative Science and Research Technology (IJISRT);2024-06-08

4. Examining the quality of learned representations in self-supervised medical image analysis: a comprehensive review and empirical study;Multimedia Tools and Applications;2024-04-18

5. Adaptive Colorization of Historical and Faded Photographs;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3