Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models

Author:

Xayasouk ThanongsakORCID,Lee HwaMin,Lee Giyeol

Abstract

Many countries worldwide have poor air quality due to the emission of particulate matter (i.e., PM10 and PM2.5), which has led to concerns about human health impacts in urban areas. In this study, we developed models to predict fine PM concentrations using long short-term memory (LSTM) and deep autoencoder (DAE) methods, and compared the model results in terms of root mean square error (RMSE). We applied the models to hourly air quality data from 25 stations in Seoul, South Korea, for the period from 1 January 2015, to 31 December 2018. Fine PM concentrations were predicted for the 10 days following this period, at an optimal learning rate of 0.01 for 100 epochs with batch sizes of 32 for LSTM model, and DAEs model performed best with batch size 64. The proposed models effectively predicted fine PM concentrations, with the LSTM model showing slightly better performance. With our forecasting model, it is possible to give reliable fine dust prediction information for the area where the user is located.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference45 articles.

1. South Korea’s Air Pollution: Gasping for Solutionshttp://isdp.eu/publication/south-koreas-air-pollution-gasping-solutions/

2. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts

3. The impact of PM2.5 on the human respiratory system;Xing;J. Thorac. Dis.,2016

4. Deep learning methods in protein structure prediction

5. Deep Learning and Neural Networks;Heaton,2015

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3