Performance Degradation Modeling and Its Prediction Algorithm of an IGBT Gate Oxide Layer Based on a CNN-LSTM Network

Author:

Wang Xin123,Zhou Zhenwei23,He Shilie23,Liu Junbin23,Cui Wei1

Affiliation:

1. School of Automation and Engineering, South China University of Technology, Guangzhou 510641, China

2. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China

3. Key Laboratory of Science and Technology on Reliability Physics and Application of Electronic Component, Guangzhou 511370, China

Abstract

The problem of health status prediction of insulated-gate bipolar transistors (IGBTs) has gained significant attention in the field of health management of power electronic equipment. The performance degradation of the IGBT gate oxide layer is one of the most important failure modes. In view of failure mechanism analysis and the easy implementation of monitoring circuits, this paper selects the gate leakage current of an IGBT as the precursor parameter of gate oxide degradation, and uses time domain characteristic analysis, gray correlation degree, Mahalanobis distance, Kalman filter, and other methods to carry out feature selection and fusion. Finally, it obtains a health indicator, characterizing the degradation of IGBT gate oxide. The degradation prediction model of the IGBT gate oxide layer is constructed by the Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM) Network, which show the highest fitting accuracy compared with Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Support Vector Regression (SVR), Gaussian Process Regression (GPR), and CNN-LSTM models in our experiment. The extraction of the health indicator and the construction and verification of the degradation prediction model are carried out on the dataset released by the NASA-Ames Laboratory, and the average absolute error of performance degradation prediction is as low as 0.0216. These results show the feasibility of the gate leakage current as a precursor parameter of IGBT gate oxide layer failure, as well as the accuracy and reliability of the CNN-LSTM prediction model.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Opening Project (No. 21D03) of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3