Theoretical Analysis and Numerical Simulation of the Motion of RDX Deflagration-Driven Flyer Plate Based on Laser-Initiated Micro-Pyrotechnic Devices

Author:

Xian Mingchun12,Zhao Kang2,Liu Xuwen3ORCID,Meng Yangang2,Xie Junyao2,Li Jingwei1,Tong Lele2,Huang Meng2,Wu Lizhi1

Affiliation:

1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. Sichuan Aerospace Chuannan Pyrotechnics Co., Ltd., Luzhou 646000, China

3. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China

Abstract

Miniaturized laser-initiated pyrotechnic devices have great application prospects in aerospace and modern weapon systems due to their excellent energy output performance and reliability. In order to develop a low-energy insensitive laser detonation technology based on a two-stage charge structure, it is important to deeply analyze the motion law of a titanium flyer plate driven by the deflagration of the first-stage charge (RDX). The effects of the charge mass of RDX, flyer plate mass, and barrel length on the motion law of flyer plates were studied through a numerical simulation method based on the Powder Burn deflagration model. The consistency between the numerical simulation and the experimental results was analyzed using the paired t confidence interval estimation method. The results show that the Powder Burn deflagration model can effectively describe the motion process of the RDX deflagration-driven flyer plate with a 90% confidence level, and its velocity error is ≤6.7%. The speed of the flyer plate is proportional to the mass of the RDX charge, inversely proportional to the mass of the flyer plate, and exponentially related to its moving distance. As the moving distance of the flyer plate increases, the RDX deflagration products and air in front of the flyer plate are compressed, which inhibits the motion of the flyer plate. In the optimum state (the mass of the RDX charge is 60 mg, the mass of the flyer is 85 mg, and the length of the barrel is 3 mm), the speed of the titanium flyer reaches 583 m/s, and the peak pressure of the RDX deflagration reaches 2182 MPa. This work will provide a theoretical basis for the refined design of a new generation of miniaturized high-performance laser-initiated pyrotechnic devices.

Funder

Jianghan University School-level Scientific Research Project Funding Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3