Numerical Analysis of Droplet Impacting on an Immiscible Liquid via Three-Phase Field Method

Author:

Hu Qingming123,Hu Fengshi1,Xu Donghui1,Zhang Kailiang4ORCID

Affiliation:

1. School of Mechtranoics Engineering, Qiqihar University, Qiqihaer 161006, China

2. The Engineering Technology Research Center for Precision Manufacturing Equipment and Industrial Perception of Heilongjiang Province, Qiqihar University, Qiqihaer 161006, China

3. The Collaborative Innovation Center for Intelligent Manufacturing Equipment Industrialization, Qiqihar University, Qiqihaer 161006, China

4. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

In this work, we establish a two-dimensional axisymmetric simulation model to numerically study the impacting behaviors between oil droplets and an immiscible aqueous solution based on the three-phase field method. The numerical model is established by using the commercial software of COMSOL Multiphysics first and then validated by comparing the numerical results with the previous experimental study. The simulation results show that under the impact of oil droplets, a crater will form on the surface of the aqueous solution, which firstly expands and then collapses with the transfer and dissipation of kinetic energy of this three-phase system. As for the droplet, it flattens, spreads, stretches, or immerses on the crater surface and finally achieves an equilibrium state at the gas–liquid interface after experiencing several sinking-bouncing circles. The impacting velocity, fluid density, viscosity, interfacial tension, droplet size, and the property of non-Newtonian fluids all play important roles in the impact between oil droplets and aqueous solution. The conclusions can help to cognize the mechanism of droplet impact on an immiscible fluid and provide useful guidelines for those applications concerning droplet impact.

Funder

Young Elite Scientists Sponsorship Program by Heilongjiang Province

Heilongjiang Natural Science Foundation Project

Basic scientific research operating expenses project of Heilongjiang Province

Special projects for central guidance of local scientific and technological development

Postdoctoral Research Foundation of China

Heilongjiang Provincial Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3