Realizing the High Q-Factor of a CSIW Microwave Resonator Based on an MDGS for Semisolid Material Characterization

Author:

Al-Gburi Ahmed Jamal Abdullah1ORCID,Rahman Norhanani Abd2ORCID,Zakaria Zahriladha3ORCID,Akbar Muhammad Firdaus4ORCID

Affiliation:

1. Center for Telecommunication Research & Innovation (CeTRI), Faculty of Electrical and Electronic Engineering Technology (FTKEE), Malacca 76100, Malaysia

2. Centre of Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Durian Tungal, Melaka 76100, Malaysia

3. Department of Electrical Engineering, Politeknik Port Dickson (PPD), Port Dickson, Negeri Sembilan 71250, Malaysia

4. School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Seberang Perai 14300, Malaysia

Abstract

In this work, the high-quality factor (Q-factor) and high sensitivity of a circular substrate-integrated waveguide (CSIW) are proposed for the characterization of semisolid materials. The modeled sensor was designed based on the CSIW structure with a mill-shaped defective ground structure (MDGS) to improve measurement sensitivity. The designed sensor oscillates at a single frequency of 2.45 GHz, which was simulated using an Ansys HFSS simulator. Electromagnetic simulation explains the basis of the mode resonance of all two-port resonators. Six variations of the materials under test (SUTs) were simulated and measured, including air (without an SUT), Javanese turmeric, mango ginger, black turmeric, turmeric, and distilled water (DI). A detailed sensitivity calculation was performed for the resonance band at 2.45 GHz. The SUT test mechanism was performed using a polypropylene tube (PP). The samples of dielectric material were filled into the channels of the PP tube and loaded into the center hole of the MDGS. The E-fields around the sensor affect the relationship with the SUTs, resulting in a high Q-factor value. The final sensor had a Q-factor of 700 and a sensitivity of 2.864 at 2.45 GHz. Due to the high sensitivity of the presented sensor for characterization of various semisolid penetrations, the sensor is also of interest for accurate estimation of solute concentration in liquid media. Finally, the relationship between the loss tangent, permittivity, and Q-factor at the resonant frequency were derived and investigated. These results make the presented resonator ideal for the characterization of semisolid materials.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3