Affiliation:
1. Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
Abstract
In this paper, the behavior of the Bi-Material Cantilever (B-MaC) response deflection upon fluidic loading was experimentally studied and modeled for bilayer strips. A B-MaC consists of a strip of paper adhered to a strip of tape. When fluid is introduced, the paper expands while the tape does not, which causes the structure to bend due to strain mismatch, similar to the thermal loading of bi-metal thermostats. The main novelty of the paper-based bilayer cantilevers is the mechanical properties of two different types of material layers, a top layer of sensing paper and a bottom layer of actuating tape, to create a structure that can respond to moisture changes. When the sensing layer absorbs moisture, it causes the bilayer cantilever to bend or curl due to the differential swelling between the two layers. The portion of the paper strip that gets wet forms an arc, and as the fluid advances and fully wets the B-MaC, the entire B-MaC assumes the shape of the initial arc. This study showed that paper with higher hygroscopic expansion forms an arc with a smaller radius of curvature, whereas thicker tape with a higher Young’s modulus forms an arc with a larger radius of curvature. The results showed that the theoretical modeling could accurately predict the behavior of the bilayer strips. The significance of paper-based bilayer cantilevers lies in their potential applications in various fields, such as biomedicine, and environmental monitoring. In summary, the novelty and significance of paper-based bilayer cantilevers lie in their unique combination of sensing and actuating capabilities using a low-cost and environmentally friendly material.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Reference27 articles.
1. Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials;Xu;Adv. Funct. Mater.,2017
2. Quirion, D., Manna, M., Hidalgo, S., and Pellegrini, G. (2020). Manufacturability and Stress Issues in 3D Silicon Detector Technology at IMB-CNM. Micromachines, 11.
3. NIR–UV Responsive Actuator with Graphene Oxide/Microchannel-Induced Liquid Crystal Bilayer Structure for Biomimetic Devices;Zhang;ACS Appl. Mater. Interfaces,2020
4. Controllable Shape Changing and Tristability of Bilayer Composite;Wang;ACS Appl. Mater. Interfaces,2019
5. Mortezam, A. (2019). Functional Nanomaterial Composites for Soft Sensing and Actuation. [Ph.D. Thesis, University of Glasgow].
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献