Semi-Supervised Classification for Hyperspectral Images Based on Multiple Classifiers and Relaxation Strategy

Author:

Xie Fuding,Hu Dongcui,Li Fangfei,Yang JunORCID,Liu Deshan

Abstract

Hyperspectral image (HSI) classification is a fundamental and challenging problem in remote sensing and its various applications. However, it is difficult to perfectly classify remotely sensed hyperspectral data by directly using classification techniques developed in pattern recognition. This is partially owing to a multitude of noise points and the limited training samples. Based on multinomial logistic regression (MLR), the local mean-based pseudo nearest neighbor (LMPNN) rule, and the discontinuity preserving relaxation (DPR) method, in this paper, a semi-supervised method for HSI classification is proposed. In pre-processing and post-processing, the DPR strategy is adopted to denoise the original hyperspectral data and improve the classification accuracy, respectively. The application of two classifiers, MLR and LMPNN, can automatically acquire more labeled samples in terms of a few labeled instances per class. This is termed the pre-classification procedure. The final classification result of the HSI is obtained by employing the MLRsub approach. The effectiveness of the proposal is experimentally evaluated by two real hyperspectral datasets, which are widely used to test the performance of the HSI classification algorithm. The comparison results using several competing methods confirm that the proposed method is effective, even for limited training samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3