The Classification of Noise-Afflicted Remotely Sensed Data Using Three Machine-Learning Techniques: Effect of Different Levels and Types of Noise on Accuracy

Author:

Boonprong Sornkitja,Cao Chunxiang,Chen Wei,Ni Xiliang,Xu Min,Acharya Bipin

Abstract

Remotely sensed data are often adversely affected by many types of noise, which influences the classification result. Supervised machine-learning (ML) classifiers such as random forest (RF), support vector machine (SVM), and back-propagation neural network (BPNN) are broadly reported to improve robustness against noise. However, only a few comparative studies that may help investigate this robustness have been reported. An important contribution, going beyond previous studies, is that we perform the analyses by employing the most well-known and broadly implemented packages of the three classifiers and control their settings to represent users’ actual applications. This facilitates an understanding of the extent to which the noise types and levels in remotely sensed data impact classification accuracy using ML classifiers. By using those implementations, we classified the land cover data from a satellite image that was separately afflicted by seven-level zero-mean Gaussian, salt–pepper, and speckle noise. The modeling data and features were strictly controlled. Finally, we discussed how each noise type affects the accuracy obtained from each classifier and the robustness of the classifiers to noise in the data. This may enhance our understanding of the relationship between noises, the supervised ML classifiers, and remotely sensed data.

Funder

The Special Fund for Forest Scientific Research in the Public Welfare

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference68 articles.

1. A competitive pixel-object approach for land cover classification

2. A rule-based classification methodology to handle uncertainty in habitat mapping employing evidential reasoning and fuzzy logic

3. Phenology-Based Land Cover Classification Using Landsat 8 Time Series;Simonetti,2014

4. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification

5. A Comparative Study of Removal Noise from Remote Sensing Image;Al-amri;IJCSI Int. J. Comput. Sci.,2010

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3