Statistical Analysis and Stochastic Modelling of Hydrological Extremes

Author:

Tabari HosseinORCID

Abstract

Analysis of hydrological extremes is challenging due to their rarity and small sample size and the interconnections between different types of extremes and gets further complicated by an untrustworthy representation of meso-scale processes involved in extreme events by coarse spatial and temporal scale models as well as biased or missing observations due to technical difficulties during extreme conditions. The special issue “Statistical Analysis and Stochastic Modelling of Hydrological Extremes”—motivated by the need to apply and develop innovative stochastic and statistical approaches to analyze hydrological extremes under current and future climate conditions —encompass 13 research papers. Case studies presented in the papers exploit a wide range of innovative techniques for hydrological extremes analyses. The papers focus on six topics: Historical changes in hydrological extremes, projected changes in hydrological extremes, downscaling of hydrological extremes, early warning and forecasting systems for drought and flood, interconnections of hydrological extremes and applicability of satellite data for hydrological studies. This Editorial provides an overview of the covered topics and reviews the case studies relevant for each topic.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3