From Bilinear Regression to Inductive Matrix Completion: A Quasi-Bayesian Analysis

Author:

Mai The Tien1ORCID

Affiliation:

1. Department of Mathematical Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway

Abstract

In this paper, we study the problem of bilinear regression, a type of statistical modeling that deals with multiple variables and multiple responses. One of the main difficulties that arise in this problem is the presence of missing data in the response matrix, a problem known as inductive matrix completion. To address these issues, we propose a novel approach that combines elements of Bayesian statistics with a quasi-likelihood method. Our proposed method starts by addressing the problem of bilinear regression using a quasi-Bayesian approach. The quasi-likelihood method that we employ in this step allows us to handle the complex relationships between the variables in a more robust way. Next, we adapt our approach to the context of inductive matrix completion. We make use of a low-rankness assumption and leverage the powerful PAC-Bayes bound technique to provide statistical properties for our proposed estimators and for the quasi-posteriors. To compute the estimators, we propose a Langevin Monte Carlo method to obtain approximate solutions to the problem of inductive matrix completion in a computationally efficient manner. To demonstrate the effectiveness of our proposed methods, we conduct a series of numerical studies. These studies allow us to evaluate the performance of our estimators under different conditions and provide a clear illustration of the strengths and limitations of our approach.

Funder

Norwegian Research Centre

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference51 articles.

1. Rosen, D.V. (2021). Methodology and Applications of Statistics, Springer.

2. Von Rosen, D. (2018). Bilinear regression analysis: An Introduction, Springer. Lecture Notes in Statistics.

3. A generalized multivariate analysis of variance model useful especially for growth curve problems;Potthoff;Biometrika,1964

4. Growth curve analysis of complete and incomplete longitudinal data;Woolson;Commun. Stat.-Theory Methods,1980

5. Kshirsagar, A., and Smith, W. (1995). Growth Curves, CRC Press.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User-friendly Introduction to PAC-Bayes Bounds;Foundations and Trends® in Machine Learning;2024

2. A reduced-rank approach to predicting multiple binary responses through machine learning;Statistics and Computing;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3