Fast Prediction Method for Scattering Parameters of Rigid-Flex PCBs Based on ANN

Author:

Mei Jingling123ORCID,Yuan Haiyue4,Guo Xinxin4,Chu Xiuqin4,Ding Lei13

Affiliation:

1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Infrared System Detection and Imaging Technologies, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

4. Key Laboratory of Ultra High Speed Circuit Design and Electromagnetic Compatibility, Ministry of Education, Xidian University, Xi’an 710071, China

Abstract

InGaAs detection systems have been increasingly used in the aerospace field, and due to the high signal-to-noise ratio requirements of short-wave infrared quantitative payloads, there is an urgent need for methods for the rapid and precise evaluation and the optimal design of these systems. The rigid-flex printed circuit board (PCB) is a vital component of InGaAs detectors, as its grid ground plane design parameters impact parasitic capacitance and thus affect weak infrared analog signals. To address the time-intensive and costly nature of design optimization achieved with simulations and experimental measurements, we propose an innovative method based on a neural network to predict the scattering parameters of rigid-flex boards for InGaAs detection links. This is the first study in which the effects of rigid-flex boards on weak infrared detection signals have been considered. We first obtained sufficient samples with software simulation. A backpropagation (BP) neural network prediction model was trained on existing sample sets and then verified on a rigid-flex board used in a crucial aerospace short-wave infrared quantitative mission. The model efficiently and accurately predicted high-speed interconnect scattering parameters under various rigid-flex board grid plane parameter conditions. The prediction error was less than 1% compared with a 3D field solver, indicating an overcoming of the iterative optimization inefficiency and showing improved design quality for InGaAs detection circuits.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3