Multi-Granularity Aggregation with Spatiotemporal Consistency for Video-Based Person Re-Identification

Author:

Lee Hean Sung1ORCID,Kim Minjung1ORCID,Jang Sungjun1ORCID,Bae Han Byeol2ORCID,Lee Sangyoun1

Affiliation:

1. School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

2. School of Computer Science and Engineering, Kunsan National University, 558 Daehak-ro, Gunsan-si 54150, Republic of Korea

Abstract

Video-based person re-identification (ReID) aims to exploit relevant features from spatial and temporal knowledge. Widely used methods include the part- and attention-based approaches for suppressing irrelevant spatial–temporal features. However, it is still challenging to overcome inconsistencies across video frames due to occlusion and imperfect detection. These mismatches make temporal processing ineffective and create an imbalance of crucial spatial information. To address these problems, we propose the Spatiotemporal Multi-Granularity Aggregation (ST-MGA) method, which is specifically designed to accumulate relevant features with spatiotemporally consistent cues. The proposed framework consists of three main stages: extraction, which extracts spatiotemporally consistent partial information; augmentation, which augments the partial information with different granularity levels; and aggregation, which effectively aggregates the augmented spatiotemporal information. We first introduce the consistent part-attention (CPA) module, which extracts spatiotemporally consistent and well-aligned attentive parts. Sub-parts derived from CPA provide temporally consistent semantic information, solving misalignment problems in videos due to occlusion or inaccurate detection, and maximize the efficiency of aggregation through uniform partial information. To enhance the diversity of spatial and temporal cues, we introduce the Multi-Attention Part Augmentation (MA-PA) block, which incorporates fine parts at various granular levels, and the Long-/Short-term Temporal Augmentation (LS-TA) block, designed to capture both long- and short-term temporal relations. Using densely separated part cues, ST-MGA fully exploits and aggregates the spatiotemporal multi-granular patterns by comparing relations between parts and scales. In the experiments, the proposed ST-MGA renders state-of-the-art performance on several video-based ReID benchmarks (i.e., MARS, DukeMTMC-VideoReID, and LS-VID).

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3