APT Attack Detection Scheme Based on CK Sketch and DNS Traffic

Author:

Xue Defan1,Chi Yaping12,Wu Bing12,Zhao Lun12

Affiliation:

1. Beijing Electronic Science and Technology Institute, Beijing 100070, China

2. School of Telecommunications Engineering, Xidian University, Xi’an 710071, China

Abstract

In recent years, Advanced Persistent Threat (APT) attacks against sensors have emerged as a prominent security concern. Due to the low level of protection provided by sensors, APT attack organizations are able to develop intrusion schemes that allow them to infiltrate, attack, lurk, spread, and steal information from the target over an extended period of time. Through extensive research on the APT attack process and current defense mechanisms, it has been found that analyzing Domain Name Server (DNS) traffic in the communication control phase is an effective way of detecting APT attacks. However, analyzing APT attacks based on traffic usually involves the detection of a vast amount of DNS traffic, and current data preprocessing methods do not scale down data effectively, leading to low detection efficiency. In previous work, most efforts have been focused on calculating the features of request messages or corresponding messages without considering the association between request messages and corresponding messages. To address these issues, we propose a sketch-based APT attack traffic detection scheme. The scheme leverages the sketch structure to count and compress network traffic, improving the efficiency of APT detection. Our work also analyzes the limitations of traditional sketches in network traffic and proposes an improved sketch scheme. In addition, we propose several effective features for detecting APT attacks. We validate and evaluate our solution using 1,088,280 DNS traffic from a lab network and APT suspicious traffic from netresec and contagio, using eight machine learning models. The experimental results show that for the ExtraTrees model, our solution has a processing time of 0.0638 s and an accuracy of 0.97920, reducing the processing time by approximately 50 times and improving detection accuracy by a small margin compared to a dataset without sketch processing.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3