Classification of Inter-Urban Highway Drivers’ Resting Behavior for Advanced Driver-Assistance System Technologies using Vehicle Trajectory Data from Car Navigation Systems

Author:

Choi JaeheonORCID,Lee Kyuil,Kim Hyunmyung,An Sunghi,Nam Daisik

Abstract

Fatigue-related crashes, which are mainly caused by drowsy or distracted driving, account for a significant portion of fatal accidents on highways. Smart vehicle technologies can address this issue of road safety to improve the sustainability of transportation systems. Advanced driver-assistance system (ADAS) can aid drowsy drivers by recommending and guiding them to rest locations. Past research shows a significant correlation between driving distance and driver fatigue, which has been actively studied in the analysis of resting behavior. Previous research efforts have mainly relied on survey methods at specific locations, such as rest areas or toll booths. However, such traditional methods, like field surveys, are expensive and often produce biased results, based on sample location and time. This research develops methods to better estimate travel resting behavior by utilizing a large-scale dataset obtained from car navigation systems, which contain 591,103 vehicle trajectories collected over a period of four months in 2014. We propose an algorithm to statistically categorize drivers according to driving distances and their number of rests. The main algorithm combines a statistical hypothesis test and a random sampling method based on the renowned Monte-Carlo simulation technique. We were able to verify that cumulative travel distance shares a significant relationship with one’s resting decisions. Furthermore, this research identifies the resting behavior pattern of drivers based upon their travel distances. Our methodology can be used by sustainable traffic safety operators to their driver guiding strategies criterion using their own data. Not only will our methodology be able to aid sustainable traffic safety operators in constructing their driver guidance strategies criterion using their own data, but it could also be implemented in actual car navigation systems as a mid-term solution. We expect that ADAS combined with the proposed algorithm will contribute to improving traffic safety and to assisting the sustainability of road systems.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference33 articles.

1. Korean National Police Agency Drowsiness Driving Traffic Accidentshttps://www.data.go.kr/data/15047952/fileData.do

2. Driving simulator experiments to study drowsiness: A systematic review

3. Guildelines for Establishment and Management of Highway Rest Area; Ministry of Land Infrastructure and Transport Korea, Koreahttp://www.molit.go.kr/USR/I0204/m_45/dtl.jsp?gubun=&search=&search_dept_id=&search_dept_nm=&old_search_dept_nm=&psize=10&search_regdate_s=&search_regdate_e=&srch_usr_nm=&srch_usr_num=&srch_usr_year=&srch_usr_titl=&srch_usr_ctnt=&lcmspage=1&idx=15952

4. Evaluation of Driver Behavior Criteria for Evolution of Sustainable Traffic Safety

5. Application of the AHP-BWM Model for Evaluating Driver Behavior Factors Related to Road Safety: A Case Study for Budapest

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3