Abstract
Fatigue-related crashes, which are mainly caused by drowsy or distracted driving, account for a significant portion of fatal accidents on highways. Smart vehicle technologies can address this issue of road safety to improve the sustainability of transportation systems. Advanced driver-assistance system (ADAS) can aid drowsy drivers by recommending and guiding them to rest locations. Past research shows a significant correlation between driving distance and driver fatigue, which has been actively studied in the analysis of resting behavior. Previous research efforts have mainly relied on survey methods at specific locations, such as rest areas or toll booths. However, such traditional methods, like field surveys, are expensive and often produce biased results, based on sample location and time. This research develops methods to better estimate travel resting behavior by utilizing a large-scale dataset obtained from car navigation systems, which contain 591,103 vehicle trajectories collected over a period of four months in 2014. We propose an algorithm to statistically categorize drivers according to driving distances and their number of rests. The main algorithm combines a statistical hypothesis test and a random sampling method based on the renowned Monte-Carlo simulation technique. We were able to verify that cumulative travel distance shares a significant relationship with one’s resting decisions. Furthermore, this research identifies the resting behavior pattern of drivers based upon their travel distances. Our methodology can be used by sustainable traffic safety operators to their driver guiding strategies criterion using their own data. Not only will our methodology be able to aid sustainable traffic safety operators in constructing their driver guidance strategies criterion using their own data, but it could also be implemented in actual car navigation systems as a mid-term solution. We expect that ADAS combined with the proposed algorithm will contribute to improving traffic safety and to assisting the sustainability of road systems.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference33 articles.
1. Korean National Police Agency Drowsiness Driving Traffic Accidentshttps://www.data.go.kr/data/15047952/fileData.do
2. Driving simulator experiments to study drowsiness: A systematic review
3. Guildelines for Establishment and Management of Highway Rest Area; Ministry of Land Infrastructure and Transport Korea, Koreahttp://www.molit.go.kr/USR/I0204/m_45/dtl.jsp?gubun=&search=&search_dept_id=&search_dept_nm=&old_search_dept_nm=&psize=10&search_regdate_s=&search_regdate_e=&srch_usr_nm=&srch_usr_num=&srch_usr_year=&srch_usr_titl=&srch_usr_ctnt=&lcmspage=1&idx=15952
4. Evaluation of Driver Behavior Criteria for Evolution of Sustainable Traffic Safety
5. Application of the AHP-BWM Model for Evaluating Driver Behavior Factors Related to Road Safety: A Case Study for Budapest
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献