Identifying Sustainable Grassland Management Approaches in Response to the Invasive Legume Lespedeza cuneata: A Functional Group Approach

Author:

Garrett Erin M.,Gibson David J.ORCID

Abstract

We propose combining the filter framework model of community assembly with the passenger-driver model of non-native species behavior to help clarify the impacts of invasive species in the communities they invade and to guide sustainable management protocols. Observational field surveys and a greenhouse experiment explored the role of the invasive legume Lespedeza cuneata in the communities it invades and how natives in three functional groups—grasses, forbs, and legumes—respond to its presence. Within-site analyses from the field survey revealed differences in invaded and uninvaded areas in half of the sites, suggesting that site-specific characteristics influences whether L. cuneata’s presence corresponds to local differences in species composition. The greenhouse experiment found higher levels of saprophytic and arbuscular mycorrhizal fungi in soil conditioned by L. cuneata than in unconditioned soil. However, competition between L. cuneata or the native congener L. capitata and nine native species illustrated stronger aboveground competitive effects than belowground soil effects due to soil conditioning, with impacts differing among functional groups. The response of L. cuneata was reduced in the presence of grasses and other legumes but not forbs. Assessing the impact of L. cuneata with the combined community assembly model revealed this invasive plant acts as a driver because it alters abiotic and biotic filters to impact species composition. Managing for high grass abundance and planting native legumes will help sustain grasslands from L. cuneata invasion.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3