The Economic Viability of a Progressive Smart Building System with Power Storage

Author:

Janhunen Eerika,Leskinen Niina,Junnila Seppo

Abstract

The increased smartness of the built environment is expected to contribute positively to climate change mitigation through energy conservation, efficient renewable energy utilization, and greenhouse gas emission reduction. Accordingly, significant investments are required in smart technologies, which enable the distributed supply of renewables and increased demand-side energy flexibility. The present study set out to understand the cash flows and economic viability of a real-life smart system investment in a building. The data collection process was threefold: First, a case building’s level of (energy) smartness was estimated. Second, the semi-structured interviews were held to understand the building owner’s motives for a smart investment. Third, the investment’s profitability was analyzed. The study found that the progressive smartness investment was technically feasible, and surprisingly also economically profitable. The original EUR 6 million investment provided over 10% return-on-investment and, thus, increased the property value by more than EUR 10 million. Moreover, the commercial partners also emphasized the strategic value gained by renewable energy and environmental performance. The high level of smartness with a good return on investment was accomplished mainly through new income generated from the reserve power markets. However, the results implied that financial profitability alone was not enough to justify the economic viability of a smart building system investment.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference52 articles.

1. World Urbanization Prospects: The 2018 Revision,2019

2. United Nations Sustainable Development Goals https://sustainabledevelopment.un.org/

3. IEA; IRENA Perspectives for the Energy Transition—Investment Needs for a Low-Carbon Energy System https://www.irena.org/publications/2017/Mar/Perspectives-for-the-energy-transition-Investment-needs-for-a-low-carbon-energy-system

4. Human Development Report 2019,2019

5. Energy flexible building through smart demand-side management and latent heat storage

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3