Investigation of Barrier Island Highway and Marsh Vulnerability to Bay-Side Flooding and Erosion

Author:

Tomiczek ToriORCID,Sciaudone Elizabeth J.ORCID,Velásquez-Montoya LilianaORCID,Smyre Elizabeth,Wargula Anna,Fawcett Kelly,Torres Joshua

Abstract

Coastal highways along narrow barrier islands are vulnerable to flooding due to ocean and bay-side events, which create hazardous travel conditions and may restrict access to surrounding communities. This study investigates the vulnerability of a segment of highway passing through the Pea Island National Wildlife Refuge in the Outer Banks, North Carolina, USA. Publicly available data, computational modeling, and field observations of shoreline change are synthesized to develop fragility models for roadway flooding and marsh conditions. At 99% significance, peak daily water levels and significant wave heights at nearby monitoring stations are determined as significant predictors of roadway closure due to flooding. Computational investigations of bay-side storms identify peak water levels and the buffer distance between the estuarine shoreline and the roadway as significant predictors of roadway transect flooding. To assess the vulnerability of the marsh in the buffer area, a classification scheme is proposed and used to evaluate marsh conditions due to long-term and episodic (storm) stressors. Marsh vulnerability is found to be predicted by the long-term erosion rate and distance from the shoreline to the 5 m depth contour of the nearby flood tidal channel. The results indicate the importance of erosion mitigation and marsh conservation to enhance the resilience of coastal transportation infrastructure.

Funder

North Carolina Department of Transportation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3