Effects of Bionic Pectoral Fin Rays’ Spanwise Flexibility on Forwarding Propulsion Performance

Author:

He JunjieORCID,Cao Yonghui,Huang Qiaogao,Pan Guang,Dong Xin,Cao YongORCID

Abstract

Oscillating pectoral fins’ spanwise flexibility is a key factor influencing the forwarding propulsion performance of bionic cownose rays, including thrust and heave-pitch stability. This study explores the effects of the bionic pectoral fin ray’s spanwise flexibility on its propulsion performance via experiments. Inspired by the cownose ray, a pair of bionic pectoral fins with fin rays and fabric skin was designed, and two motors drive the controllable flapping motion. The bionic pectoral fins’ flexibility can be quantified by using fin rays’ bending stiffness. The experiments were carried out in a water tank to measure the thrust, the lift force, and the pitch moment of the bionic cownose ray. The fin rays are divided into plastic sheets of five thicknesses and three fin rays with more obvious stiffness variations. The movement parameters included the following: the flapping frequency of 0.3–0.7 Hz, the flapping amplitude of 20–40°, and the phase difference of 20–40°. The experimental results show that the stiffness of the bionic pectoral fin rays plays an important role in the thrust, lift force, and pitch moment. The fin rays with high stiffness root segment and low stiffness tip segment have lower lift and pitch moment while maintaining a high thrust. This shows that the pectoral fins’ flexible characteristics of the cownose ray are of great significance to the design of the bionic prototype.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of underwater vehicle motion stability;Ocean Engineering;2023-11

2. Recent advances in hydrodynamics of wing propulsive lifting systems for ships and underwater vehicles;Physics of Fluids;2023-11-01

3. Development of an underwater robot with undulation propulsion;Bioinspiration, Biomimetics, and Bioreplication XIII;2023-04-27

4. Frontiers in Deep-Sea Equipment and Technology;Journal of Marine Science and Engineering;2023-03-26

5. A Bioinspired Cownose Ray Robot for Seabed Exploration;Biomimetics;2023-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3