The Identification of Filamentous Cyanobacteria Isolated from Neopyropia Germplasm Bank Illustrates the Pattern of Contamination

Author:

Deng YinyinORCID,Tian Cuicui,Hu Chuanming,Xu Guangping,Yang LienORCID,Lu Qinqin,Zhou Wei

Abstract

The germplasm bank of economic algae provides biological insurance against environmental changes and pressures for the cultivation industry. However, the red algal free-living conchocelis germplasm of Neopyropia was easily contaminated with filamentous cyanobacteria, which severely affected the growth of Neopyropia germplasm. To date, what and how the filamentous cyanobacteria contaminated Neopyropia germplasm remained unknown. Here, we combined cytological observations with light and electron microscopes and molecular analysis of the 16S rRNA gene to elucidate the pattern of cyanobacteria contamination. Nine filamentous cyanobacteria samples isolated from the Neopyropia germplasm bank were selected. Integrating microscopy observations and phylogenetic analyses of 16S rRNA gene sequences, nine cyanobacteria samples were divided into three groups, including two Leptolyngbya with red pigments (YCR1 and YCR2) and one Nodosilinea with green pigments (YCG3). They had the same asexual reproduction mode, releasing hormogonia to grow new filaments. Due to the high reproductive ability, Leptolyngbya and Nodosilinea were easy to spread in the Neopyropia germplasm. Based on 16S rRNA gene high-throughput sequencing analyses, we found the thallus of Neopyropia (NP1, NP2, and NP3) and surrounding seawater (SW1, SW2, and SW3) were enriched with cyanobacteria, especially with Leptolyngbya and Nodosilinea, indicating the filamentous cyanobacteria contaminated Neopyropia germplasm came from the thallus of Neopyropia or seawater. The results provided a better understanding of the prevention and control of cyanobacteria contamination in the Neopyropia germplasm bank.

Funder

China Agriculture Research System-50 of MOF and MARA

Jiangsu Agricultural Industry Technology System

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3