Dynamic Interactions of a Cable-Laying Vessel with a Submarine Cable during Its Landing Process

Author:

Kuang Jianxun,Chen Guodong,Yuan Zhoulong,Qi Xiajun,Yu Qianhao,Liu ZhenORCID

Abstract

The rapid development of offshore electricity grid construction has led to a great demand for submarine cable deployment. In this study, a numerical model is established based on the commercial software ANSYS-AQWA to investigate the dynamic interactions between a cable-laying vessel and a submarine cable during its landing process, which has not yet been reported and is critical to the safety of the cable. The numerical model was validated by an experimental test on the mooring stability of a vessel conducted in a wave tank. The effects of the cable length, the current velocity, the incident wave, and the wind direction on vessel stability and the tensions in the mooring lines and cable were investigated. When the cable length is short, the submarine cable acts as a mooring cable that can stabilize the hull, but it is not safe to apply force to the submarine cable. At the same time, an increase in the current speed also increases the tensile force of the submarine cable. The influence of different incident wave directions and wind directions on the stability and tension of ships in mooring lines and cables was studied, and the most unfavorable environmental conditions for submarine cable laying were determined under different environmental conditions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference35 articles.

1. An overview on the status quo of onshore and offshore wind power development and wind power enterprise localization in China

2. Recent advances in offshore geotechnics for deep water oil and gas developments

3. Safety Control of a Multiple Return 500 kV Submarine Cable Landing Project;Zeng;Soil Eng. Found.,2018

4. The planning and surveying of submarine cable routes;Evans,2014

5. Innovative floating support technologies for submarine cable landing;Zhang,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Fluid Mechanics Methods and Applications in Marine Engineering;Journal of Marine Science and Engineering;2023-03-13

2. Numerical Study on Type Comparison of Submarine Cable Landing Floating Airbag;2022 International Conference on Applied Physics and Computing (ICAPC);2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3