Classification of Underwater Fish Images and Videos via Very Small Convolutional Neural Networks

Author:

Paraschiv Marius,Padrino Ricardo,Casari PaoloORCID,Bigal EyalORCID,Scheinin Aviad,Tchernov Dan,Fernández Anta AntonioORCID

Abstract

The automatic classification of fish species appearing in images and videos from underwater cameras is a challenging task, albeit one with a large potential impact in environment conservation, marine fauna health assessment, and fishing policy. Deep neural network models, such as convolutional neural networks, are a popular solution to image recognition problems. However, such models typically require very large datasets to train millions of model parameters. Because underwater fish image and video datasets are scarce, non-uniform, and often extremely unbalanced, deep neural networks may be inadequately trained, and undergo a much larger risk of overfitting. In this paper, we propose small convolutional neural networks as a practical engineering solution that helps tackle fish image classification. The concept of “small” refers to the number of parameters of the resulting models: smaller models are lighter to run on low-power devices, and drain fewer resources per execution. This is especially relevant for fish recognition systems that run unattended on offshore platforms, often on embedded hardware. Here, established deep neural network models would require too many computational resources. We show that even networks with little more than 12,000 parameters provide an acceptable working degree of accuracy in the classification task (almost 42% for six fish species), even when trained on small and unbalanced datasets. If the fish images come from videos, we augment the data via a low-complexity object tracking algorithm, increasing the accuracy to almost 49% for six fish species. We tested the networks with images obtained from the deployments of an experimental system in the Mediterranean sea, showing a good level of accuracy given the low quality of the dataset.

Funder

European Commission

Nvidia

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3