Abstract
Aiming at the difficult problem of motion control of robotic manta with pectoral fin flexible deformation, this paper proposes a control scheme that combines the bioinspired Central Pattern Generator (CPG) and T-S Fuzzy neural network (NN)-based control. An improved CPG drive network is presented for the multi-stage fin structure of the robotic manta. Considering the unknown dynamics and the external environmental disturbances, a sensor-based classic T-S Fuzzy NN controller is designed for heading and depth control. Finally, a pool test demonstrates the effectiveness and robustness of the proposed controller: the robotic manta can track the depth and heading with an error of ±6 cm and ±6°, satisfying accuracy requirements.
Funder
Funded by the National Natural Science Foundation of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献