Phthalates, Para-Hydroxybenzoic Acids, Bisphenol-A, and Gonadal Hormones’ Effects on Susceptibility to Attention-Deficit/Hyperactivity Disorder

Author:

Tsai Ching-ShuORCID,Chou Wen-Jiun,Lee Sheng-YuORCID,Lee Min-JingORCID,Chou Miao-Chun,Wang Liang-JenORCID

Abstract

This study aimed to examine whether endocrine-disrupting chemicals (EDCs), such as phthalates, para-hydroxybenzoic acids, and bisphenol-A (BPA), affect gonadal hormones and further link to the susceptibility to attention-deficit/hyperactivity disorder (ADHD). We recruited 98 boys with ADHD, 32 girls with ADHD, 42 boys without ADHD and any other psychiatric disorders, and 26 girls without ADHD and any other psychiatric disorders. Urine levels of EDCs, including mono-methyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), monobenzyl phthalate (MBzP), monoethylhexyl phthalate (MEHP), methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), and bisphenol A (BPA), were examined. Endocrine systems were evaluated by using the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, free testosterone, estradiol, progesterone, sex hormone-binding globulin (SHBG), and prolactin. We found that boys with ADHD had higher levels of MnBP and EP than control boys. There were no significant differences regarding EDCs between the females with ADHD and control groups. No significant differences in testosterone, free testosterone, FSH, LH, estradiol, progesterone, or SHBG were found between the ADHD group and controls among either boys or girls. Among boys with ADHD, urine MBzP and MEHP levels were positively correlated with serum testosterone levels. Among girls, urine MEP levels were positively correlated with serum LH, testosterone, and free testosterone levels. The findings suggest that the possibility of an adverse impact of EDCs on gonadal hormones and neurodevelopment may exist. However, the results could be subject to potential selection bias, and the findings in this study should be interpreted with caution.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3