Author:
Zhang Jiaying,Huang Jin,Sun Peng,Meng Fanbo,Zhang Jie,Zhao Pengbing
Abstract
With the advent of wearable communication devices, microstrip antennas have developed multiple applications due to their ultra-low-profile properties. Therefore, it is essential to analyze the problem of frequency shift and impedance mismatch when the antenna is bent. For the case of a rectangular patch antenna E-plane bent on the cylindrical surface, (1) this paper introduces the effective dielectric constant into the cavity model, which can accurately predict the resonance frequency of the antenna, and (2) according to the equivalent circuit model of the antenna resonance mode, the lumped element parameters are calculated based on the above effective dielectric constant, so that impedance characteristics and the S-parameter matching the port can be quickly constructed. From the perspective of circuit frequency characteristics, it explains the change in the transmission performance of the curved antenna. The experimental results show that the maximum difference between the experimental and theoretical calculation frequencies is less than 1%. These results verify the validity and applicability of the theory in the analysis of ultra-low-profile patch antennas and wearable electronic communication devices. It provides a theoretical basis for the fast impedance matching of patch antennas under different working conditions.
Funder
National Natural Science Foundation of China
Shaanxi Key Industry Chain Project
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献