Automatic Target Detection from Satellite Imagery Using Machine Learning

Author:

Tahir ArsalanORCID,Munawar HafizORCID,Akram Junaid,Adil MuhammadORCID,Ali Shehryar,Kouzani AbbasORCID,Mahmud M.ORCID

Abstract

Object detection is a vital step in satellite imagery-based computer vision applications such as precision agriculture, urban planning and defense applications. In satellite imagery, object detection is a very complicated task due to various reasons including low pixel resolution of objects and detection of small objects in the large scale (a single satellite image taken by Digital Globe comprises over 240 million pixels) satellite images. Object detection in satellite images has many challenges such as class variations, multiple objects pose, high variance in object size, illumination and a dense background. This study aims to compare the performance of existing deep learning algorithms for object detection in satellite imagery. We created the dataset of satellite imagery to perform object detection using convolutional neural network-based frameworks such as faster RCNN (faster region-based convolutional neural network), YOLO (you only look once), SSD (single-shot detector) and SIMRDWN (satellite imagery multiscale rapid detection with windowed networks). In addition to that, we also performed an analysis of these approaches in terms of accuracy and speed using the developed dataset of satellite imagery. The results showed that SIMRDWN has an accuracy of 97% on high-resolution images, while Faster RCNN has an accuracy of 95.31% on the standard resolution (1000 × 600). YOLOv3 has an accuracy of 94.20% on standard resolution (416 × 416) while on the other hand SSD has an accuracy of 84.61% on standard resolution (300 × 300). When it comes to speed and efficiency, YOLO is the obvious leader. In real-time surveillance, SIMRDWN fails. When YOLO takes 170 to 190 milliseconds to perform a task, SIMRDWN takes 5 to 103 milliseconds.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Twin-Driven Trust Management in Open RAN-Based Spatial Crowdsourcing Drone Services;IEEE Transactions on Green Communications and Networking;2024-09

2. Enhanced Satellite Analytics for Mussel Platform Census Using a Machine-Learning Based Approach;Electronics;2024-07-15

3. Change-centric building damage assessment across multiple disasters using deep learning;International Journal of Data Science and Analytics;2024-06-07

4. Neural Network Algorithms in Network Marketing Target Recognition and Prediction;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

5. Oil Spill Detection Using 2D Convolution Neural Network and Generative Adversarial Network;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3