Abstract
The objective of this work was to develop an effective technique for characterizing the permeation properties of various gases, including H2, He, N2, and Ar, that are absorbed in polymers. Simultaneous three-channel real-time techniques for measuring the sorption content and diffusivity of gases emitted from polymers are developed after exposure to high pressure and the subsequent decompression of the corresponding gas. These techniques are based on the volumetric measurement of released gas combined with the capacitance measurement of the water content by both semi-cylindrical and coaxial-cylindrical electrodes. This minimizes the uncertainty due to the varying temperature and pressure of laboratory environments. The gas uptake and diffusivity are determined as a function of the exposed pressure and gas spices in nitrile butadiene rubber (NBR) and ethylene propylene diene monomer (EPDM) polymers. The pressure-dependent gas transport behaviors of four different gases are presented and compared with those obtained by different techniques. A linear correlation between the logarithmic diffusivity and kinetic diameter of molecules in the gas is found between the two polymers.
Funder
Korea Research Institute of Standards and Science
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献