Simulation and Test of a Contactless Voltage Measurement Method for Overhead Lines Based on Reconstruction of Integral Node Parameters

Author:

Wang Jingang,Yan XiaojunORCID,Zhong Lu,Zhu XiaobaoORCID

Abstract

To improve the stability and adaptability of the voltage measurement based on the E-field (electric field) integral method, in this paper we introduce a new method for the contactless voltage measurement of the overhead lines. The method adopts the node parameter reconstruction technology, which is based on the Gauss–Chebyshev algorithm. In order to achieve high-quality E-field detection at the reconstructed node position, we designed a novel D-dot sensor with parallel distributed electrodes. A Maxwell simulation model of multi-level voltages of the overhead lines was carried out to determine a comprehensive criterion of the reconstruction factors. The simulation employed a three-phase overhead line experiment platform to calculate and measure the distribution and the changing trend of the E-field. The deviations of the voltage measurement were reduced at a significantly low level within 0.4%. The result of the simulation demonstrates that the method optimizes sensor distribution by reconstructing node parameters, which enables the system to have high accuracy and reliability on the contactless voltage measurement of the overhead lines.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Coupled Ground Wire Interference on the Precision of Electric Field Sensors;iEnergy;2023-12

2. Research on Non-Contact Voltage Measurement Method Based on Near-End Electric Field Inversion;Energies;2023-09-07

3. Research on Non-Contact Voltage Measurement for Insulated Transmission Line;2023 3rd International Conference on Energy Engineering and Power Systems (EEPS);2023-07-28

4. Investigation of Electric Field Distribution in Transmission Lines and the Factors Influencing Voltage Inversion;2023 3rd International Conference on Energy Engineering and Power Systems (EEPS);2023-07-28

5. Design and Quality Consistency Optimization for Contactless Voltage Sensor of New Energy Microgrid;2022 25th International Conference on Electrical Machines and Systems (ICEMS);2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3