Enhancing the Solubility of Curcumin Using a Solid Dispersion System with Hydroxypropyl-β-Cyclodextrin Prepared by Grinding, Freeze-Drying, and Common Solvent Evaporation Methods

Author:

Mai Nguyen Ngoc Sao,Nakai Riko,Kawano YayoiORCID,Hanawa TakehisaORCID

Abstract

Cyclodextrins (CDs) and their derivatives significantly increase drug solubility by forming drug/CD complexes known as solid dispersions (SDs), which consist of an inclusion complex (IC), where the drug is entrapped within the CD cavity, and a non-IC. Here, the SDs of curcumin (CUR) and hydroxypropyl-β-cyclodextrin (HPβCD) were prepared using the grinding, freeze-drying (FD), and common solvent evaporation (CSE) methods and were physicochemically characterized using solubility, powder X-ray diffraction, Fourier transform infrared, differential scanning calorimetry, and dissolution studies. The second or higher order complex of CUR-HPβCD indicated the co-existence of ICs and non-ICs known as the SD system. When comparing the soluble drug amount with CUR crystals, the solubility of SDs was enhanced by up to 299-, 180-, and 489-fold, corresponding to the ground mixtures (GMs), freeze-drying mixtures (FDs), and common solvent evaporation mixtures (CSEs), respectively. The total transformation into the amorphous phase of CUR was observed in GMs and in CSE12, CSE14, and CSE18. The drug was well dispersed within HPβCD in GMs and CSEs, suggesting the formation of hydrogen bonds between CUR and HPβCD, whereas the dispersed behavior of FDs was similar to that of physical mixtures. In SDs, the melting temperature of CUR was in an increased order of CUR in 1:2 ICs, CUR in 1:1 ICs, and CUR crystals. The dissolution rate of CUR was positively improved as the amount of HPβCD in SDs increased. The SD system consisting of CUR and HPβCD significantly increased the drug solubility compared to ICs.

Publisher

MDPI AG

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3