Author:
Lahoche Vincent,Ousmane Samary Dine,Tamaazousti Mohamed
Abstract
Renormalization group techniques are widely used in modern physics to describe the relevant low energy aspects of systems involving a large number of degrees of freedom. Those techniques are thus expected to be a powerful tool to address open issues in data analysis when datasets are highly correlated. Signal detection and recognition for a covariance matrix having a nearly continuous spectra is currently one of these opened issues. First, investigations in this direction have been proposed in recent investigations from an analogy between coarse-graining and principal component analysis (PCA), regarding separation of sampling noise modes as a UV cut-off for small eigenvalues of the covariance matrix. The field theoretical framework proposed in this paper is a synthesis of these complementary point of views, aiming to be a general and operational framework, both for theoretical investigations and for experimental detection. Our investigations focus on signal detection. They exhibit numerical investigations in favor of a connection between symmetry breaking and the existence of an intrinsic detection threshold.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献