Solving Schrödinger Bridges via Maximum Likelihood

Author:

Vargas FranciscoORCID,Thodoroff PierreORCID,Lamacraft AustenORCID,Lawrence NeilORCID

Abstract

The Schrödinger bridge problem (SBP) finds the most likely stochastic evolution between two probability distributions given a prior stochastic evolution. As well as applications in the natural sciences, problems of this kind have important applications in machine learning such as dataset alignment and hypothesis testing. Whilst the theory behind this problem is relatively mature, scalable numerical recipes to estimate the Schrödinger bridge remain an active area of research. Our main contribution is the proof of equivalence between solving the SBP and an autoregressive maximum likelihood estimation objective. This formulation circumvents many of the challenges of density estimation and enables direct application of successful machine learning techniques. We propose a numerical procedure to estimate SBPs using Gaussian process and demonstrate the practical usage of our approach in numerical simulations and experiments.

Funder

huawei technology co

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference49 articles.

1. Uber die Umkehrung der Naturgesetze;Schrödinger,1931

2. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quantique;Schrödinger;Annales de l’Institut Henri Poincaré,1932

3. Concerning nonnegative matrices and doubly stochastic matrices

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal transport for single-cell and spatial omics;Nature Reviews Methods Primers;2024-08-14

2. Modeling single cell trajectory using forward-backward stochastic differential equations;PLOS Computational Biology;2024-04-15

3. Diffusion Schrödinger Bridges for Bayesian Computation;Statistical Science;2024-02-01

4. Quantitative uniform stability of the iterative proportional fitting procedure;The Annals of Applied Probability;2024-02-01

5. Score-Based Generative Models;Deep Generative Modeling;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3