A Machine Learning Approach for Gearbox System Fault Diagnosis

Author:

Vrba JanORCID,Cejnek MatousORCID,Steinbach JakubORCID,Krbcova ZuzanaORCID

Abstract

This study proposes a fully automated gearbox fault diagnosis approach that does not require knowledge about the specific gearbox construction and its load. The proposed approach is based on evaluating an adaptive filter’s prediction error. The obtained prediction error’s standard deviation is further processed with a support-vector machine to classify the gearbox’s condition. The proposed method was cross-validated on a public dataset, segmented into 1760 test samples, against two other reference methods. The accuracy achieved by the proposed method was better than the accuracies of the reference methods. The accuracy of the proposed method was on average 9% higher compared to both reference methods for different support vector settings.

Funder

Vysoká Škola Chemicko-technologická v Praze

České Vysoké Učení Technické v Praze

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3