A Comparison of Saturated Hydraulic Conductivity (Ksat) Estimations from Pedotransfer Functions (PTFs) and Field Observations in Riparian Seasonal Wetlands

Author:

Abesh Bidisha Faruque1,Hubbart Jason A.1ORCID

Affiliation:

1. Division of Forestry and Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA

Abstract

Accurate saturated hydraulic conductivity (Ksat) predictions are critical for precise water flow estimations. Pedotransfer functions (PTFs) have been used to estimate Ksat based on soil structural and textural properties. However, PTF accuracy must be validated with observed Ksat values to improve confidence in model predictions. A study was conducted in the seasonal wetlands of a representative mixed land-use watershed in West Virginia (WV), USA. The observed data included soil characteristics and observed piezometric Ksat using slug tests. Soil texture was predominantly sandy, and the observed average Ksat ranged from 35.90 to 169.64 m/d. The average bulk dry density (bdry) increased, while porosity and volumetric water content decreased significantly with a depth to 45 cm (p < 0.05). The degree of saturation varied significantly between monitoring sites (p < 0.05). A Pearson correlation matrix and Principal Component Analysis (PCA) revealed that Ksat was more connected to soil textural properties, specifically clay. Single parameter PTFs that estimated Ksat as a function of clay content performed better (ME = −90.19 m/d, RMSE = 102.87 m/d) than the PTFs that used silt or sand percentages (ME= −96.86 m/d, RMSE = 108.77). However, all five PTFs predicted Ksat with low accuracy (RMSE > 100 m/d), emphasizing the need to calibrate existing PTFs with observed data or develop site-specific PTFs. These results provide valuable insights into Ksat estimation in riparian wetlands of mixed land-use watersheds and are a helpful reference for land managers and future work.

Funder

USDA National Institute of Food and Agriculture

West Virginia Agricultural and Forestry Experiment Station

USDA Natural Resources Conservation Service, Soil and Water Conservation, Environmental Quality Incentives Program

Agriculture and Food Research Initiative Competitive

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3