Influence of Multi-Cross Structures on the Flood Discharge Capacity of Mountain Rivers in the Yellow River Basin

Author:

Hu Jianyong12ORCID,Shen Hui3,Zhang Jinxin24,Meng Zhenzhu24,Zhang Yuzhou12,Han Wei5

Affiliation:

1. School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

2. Engineering Research Center of Digital Twin Basin of Zhejiang Province, Hangzhou 310018, China

3. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China

4. School of Water Conservancy & Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

5. School of Electric Power, North China University of Water Resources and Hydropower, Zhengzhou 450045, China

Abstract

This study investigates the impact of cross structures on flood occurrences in mountainous rivers. The governing equations of open channel flow were formulated based on the Saint-Venant equations. The open channel was segmented, and a node equation was established at each section’s connection point. An overflow model of bridges and weir dams was also developed. The physical model of the open channel was simplified and modeled using actual building data and model calculation requirements. The study found that the primary impact of weirs and bridges on the open channel was the backwater effect on the water level. The influence of these structures on the water level in the Huang Stream urban section in the Yellow River Basin was assessed under various working conditions. The results showed that deleting the #1 weir could reduce the maximum backwater height by 1.14 m, and deleting the #2 weir could reduce it by 1.09 m. While reducing the weir height significantly decreased the backwater range and height, it did not enhance the river’s flood discharge capacity. The Huang Stream contains 17 bridges, 13 of which could potentially affect flood discharge. The eight flat slab bridges in the submerged outflow state had a significant impact on flood discharge, with a maximum water level change of 0.51 m. Conversely, the three single-hole flat slab bridges in the free outflow state downstream had a negligible impact on flood discharge. The study found that bridges had a greater influence on flood discharge capacity than weirs. This research provides valuable insights for the reconstruction of cross structures in mountainous rivers and for managing flood discharge capacity and flood control.

Funder

Key Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3