Analysis of Ballast Water Discharged in Port—A Case Study of the Port of Ploče (Croatia)

Author:

Hasanspahić NerminORCID,Pećarević MarijanaORCID,Hrdalo NikoORCID,Čampara Leo

Abstract

Ballast water is recognized as a major vector for the transfer of Harmful Aquatic Organisms and Pathogens (HAOP) and a source of sea pollution that negatively affects the environment and human health. Therefore, the International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ship’s Ballast Water and Sediments (BWM Convention) in 2004. The BWM Convention introduced two standards, Ballast Water Exchange Standard (Regulation D-1) and Ballast Water Performance Standard (Regulation D-2). Ships are required to install Ballast Water Treatment (BWT) equipment in order to comply with Regulation D-2. However, the deadline for the installation of BWT is prolonged until September 2024, and many ships are still complying only with Regulation D-1. In addition, there are specific sea areas where Regulation D-1 cannot be complied with, and hence, HAOP could be easily transferred between ports. Consequently, it is essential to develop a system to protect the marine environment, human health and economy in coastal areas from the introduction of HAOP. This paper analyses ballast water discharged in the Port of Ploče (Croatia) according to ship type, age and flag they are flying. It was found that general cargo ships and bulk carriers discharged most of the ballast (87% of the total quantity) in the Port of Ploče. Moreover, discharged ballast water was analysed according to the origin, and it was found that 70% of discharged ballast originates from the Adriatic Sea. Based on the analysis of the research results and literature review, the ballast water risk assessment (BWRA) method was adopted, however, with certain modifications. The adopted method is modified by an additional risk factor (the deballasting ship’s age), different risk scoring of the deballasting ship type and adding Paris MoU Grey and Black lists flag ships as high-risk ships. As a result, the BWRA method presented in the paper could be used as an early warning system and to facilitate the implementation of adequate measures to prevent pollution by discharged ballast water.

Funder

project ProtectAS

European Structural and Investment Funds (ESI)—The European Regional Development Fund

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference57 articles.

1. Review of Maritime Transport 2021. 2022.

2. International Convention for the Control and Management of Ship’s Ballast Water and Sediments (BWMC), 2004.

3. Ballast Water Management: Stopping the Spread of Invasive Species by Ships. 2021.

4. Problematika unosa stranih organizama brodovima Ispust vodenog balasta u hrvatskim lukama;Pećarević;Pomor. Zb.,2004

5. Prijedlog Strategije Upravljanja Balastnim Vodama u Republici Hrvatskoj (in Croatian). 2021.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3