Hydrodynamic and Particle Drift Modeling as a Support System for Maritime Search and Rescue (SAR) Emergencies: Application to the C-212 Aircraft Accident on 2 September, 2011, in the Juan Fernández Archipelago, Chile

Author:

Córdova PabloORCID,Flores Raúl P.ORCID

Abstract

Search and rescue (SAR) refers to every operation aiming to find someone presumed lost, sick, or injured in remote or hard-to-access areas. This study presents the design of an operational system that supports maritime SAR emergencies by combining information from global hydrodynamic models (GHM) and a local hydrodynamic model (LHM) implemented in FVCOM. The output of these hydrodynamic models is used as input in a multiple particle drift estimator (MPDE) to estimate the trajectories of the floating elements derived from accidents in the ocean. The MPDE also includes trajectory estimates using the empirical LEEWAY formulation. The modeling system is validated with data collected during a SAR emergency that occurred on 2 September 2011, where a C-212 aircraft from the Chilean Air Force destined to the Juan Fernández Archipelago crashed in the ocean between the islands of Santa Clara and Robinson Crusoe. Trajectories were assessed in terms of the commonly used NCLS (normalized cumulative Lagrangian separation) performance indicator and a modified version, NCLSmod, which considers both the movement and orientation of the trajectories. The LHM was executed in three scenarios: forced only with tide, forced with tide and wind combined, and forced only with wind. The performance of the different models varied in response to the ocean–atmosphere conditions and their local variations at the time of the accident. In times of calm wind, models with tidal influence performed better, while wind-forced models performed better when winds were greater than 7 km h−1. The use of FVCOM (LHM) solved the coastal circulation and accounted for bathymetric effects in the Juan Fernández Archipelago area. This resulted in an improved variability and distribution of the modeled trajectories compared to the observed drifter trajectories. This work is the first study related to cases of maritime SAR emergencies in Chile, and provides a fast tool to estimate search areas based on an ensemble of particle drift and trajectory forecasts using multiple publicly available data sources.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3