Study on Distribution Law of Gas Phase and Cavitation in the Pressurization Unit of Helical Axial Flow Multiphase Pump

Author:

Xiao YexiangORCID,Gui Zhonghua,Li XuesongORCID,Tao Sijia,Shi Guangtai,Gu Chunwei

Abstract

Due to the irregular change of gas void fraction (GVF) in multiphase pumps, the pressure distribution in the pump is often uneven, which leads to the formation of low-pressure area and thus the occurrence of cavitation. In order to study the gas phase and cavitation distribution in the impeller region of a multiphase pump under different cavitation stages and GVF conditions, this study used numerical calculations as the main method and experimental verification as a secondary method to investigate the cavitation phenomenon in the pump under different stages and GVF conditions. The results showed that at different stages, both the volume fraction and the covering area of the gas phase were reduced to a certain extent with the increase in blade height, and the distribution law of the gas phase on the blade changed with the development of the cavitation stage, especially on the blade surface. At different GVFs, cavitation first occurred at the inlet of the blade SS and then extended along the blade streamline from the inlet to outlet, with the volume fraction and distribution of cavitation gradually increasing and then extending to the blade PS. The results showed that the presence of the gas phase inhibited the development of cavitation in the multiphase pump to some extent, and the cavitation performance of the multiphase pump was better in the presence of the gas phase than in pure water conditions. The results of this study provide a theoretical basis for improving the cavitation performance of multiphase pumps.

Funder

the National Science and Technology Major Project of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference28 articles.

1. Deep seawater as efficiency improver for cogeneration plants of petroleum production units;Energy,2019

2. Energy harvesting from ocean waves by a floating energy harvester;Energy,2016

3. Multiphase pumping addressed a wide range of operating problems;Oil Gas J.,2009

4. Improvement of hydrodynamic performance of a multiphase pump using design of experiment techniques;J. Fluids Eng.,2015

5. Design method of controllable velocity moment and optimization of pressure fluctuation suppression for a multiphase pump;Ocean Eng.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3