Application and Validation of Flood Damage Curves for Wastewater Treatment Facilities (WWTF), Case Examples in Rhode Island

Author:

Donahue Tyler,Krekorian Peter,Swift Luke,Spaulding Malcolm L.ORCID,Baxter ChrisORCID,Swanson Craig

Abstract

The STORMTOOLS Coastal Environmental Risk Index (CERI) has historically been used to assess the damage to residential and commercial structures from coastal flooding, including the effects of sea level rise (SLR) in RI. In the present study, CERI was extended to address the impact of flooding for 100 yr storm, including the effects of SLR, to the newly renovated Warren, RI wastewater treatment facilities (WWTF), located on the tidal Warren River, using FEMA HAZUS damage curves. The analysis shows that the average damage for 100 yr flooding, across all components of the facility, increases with sea level from 16% (0 ft SLR), 23% (2 ft SLR), 26% (3 ft SLR), to 28% (5 ft SLR). The primary settling and chlorination tanks are at most risk and the aeration and reaction tanks at least risk. In an effort to validate the FEMA HAZUS WWTF damage curves, CERI was applied to predict flood damage during the 3 day, March/April 2010 flooding event (500 yr) to the Cranston, Warwick, and West Warwick WWTF located on the Pawtuxet River, RI. The predictions of the damage to each WWTF from this event were compared to observations of the damage made by the plant operators. The percent damage was estimated by comparing the cost of the damage to the assessed value of the facility. Using the FEMA HAZUS damage curves for the observed level of inundation (7 to 8 ft) predicted that the Warwick and West Warwick facility damage ranged from 15 to 45% with an average value of about 30%. The Cranston WWTF damage was very low (<1%) because of the elevation of the facility. The observed damage for the 2010 flood event was approximately 21% for the Warwick facility and 18% for the West Warwick facility, between the FEMA HAZUS lower and average values. Damage to the Cranston facility was consistent between FEMA HAZUS and observed values at <1%.

Funder

Ocean Engineering at the University of RI

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3